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The supplemental material contains further criteria for the melting temperature, details about
the analysis of the specific heat, an illustration of the defect distribution at the specific heat peak,
and a comment about the interaction parameter Γ.

FINITE SIZE ANALYSIS OF THE
TRANSLATIONAL ORDER

We have run simulations of the system with different
sizes to check for finite size effects (periodic boundary
conditions are used in all cases with a rectangular box).
The simulations have shown that the transition points
are almost unaffected, within the numerical uncertain-
ties, and the peak of the specific heat reduces its height
and widens, but does not move in Γ. This can be ra-
tionalized considering that long-wavelength fluctuations
are absent in smaller systems, reducing the fluctuations.
This result confirms the finding from the sub-box anal-
ysis of the experimental data presented below i.e. only
the height of the peak is system dependent, but not its
position with respect to the transition points.

On the other hand, a sub-box analysis of data with a
fixed size can be used to obtain the transition points from
fluid to hexatic, and from hexatic to crystal phases, inde-
pendent from the analysis presented in the manuscript.
Bagchi et al. proposed to use global order parameters
calculated in subsystems with different lengths, L, which
scales with different exponents in the isotropic fluid, hex-
atic fluid and crystal phases [1]. We study the scaling of
the translational order parameter in the simulations, ΨT ,
to obtain an estimation of the hexatic-crystal transition,
independent from the orientational correlation function,
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FIG. 1. Scaling of the translational order parameter for sub-
systems of size L for different values of Γ, as labeled in the
graph. Both ΨT and L are normalized by the values of the
whole system, ΨT,0 and L0. The continuous line shows L−2

and the broken one, L−1/3.

as shown in Fig. 1 of the manuscript. ΨT is defined as
ΨT = 〈

∣∣ 1
N

∑
k exp {iqrk}

∣∣〉2, where q is the wave-vector
that maximizes the value the of ΨT (the same value of
q is used for all states) and the summation runs over all
particles in the system. The scaling of ΨT is presented
in Fig. 1 for different states. It is clearly seen in the
figure the sharp change from the behaviour of the liquid
and hexatic states, with ψT ∼ L−2, to the crystal, where
ψT ∼ L−ηT , with 0 ≤ ηT ≤ 1/3, confirming the theoret-
ical expectations, and also the transition point obtained
from the analysis in the manuscript.

2D LINDEMANN PARAMETER

To further confirm the position of the transition points
also for the experiment, we calculate the 2D modified
Lindemann parameter

γL (τ) =
〈

(~ui(τ)− ~uj(τ))
2
〉
/2a0 (1)

where ~ui(τ) and ~uj(τ) are the spatial displacements of
particle i and a nearest neighbor particle j at time τ ,
while the brackets denote an ensemble average. (In the
analysis for the experiment, we used the center of mass
of all nearest neighbors as a reference and not one neigh-
boring particle. To locate the point of symmetry break-
ing, this makes no difference.) In the solid phase, γL (τ)
is finite for τ → ∞ while in the hexatic and isotropic
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FIG. 2. Lindemann parameter γL (τ = 3000 s) for experiment
(filled symbols) and simulation (open symbols). The solid
lines indicate the solid-hexatic transition temperatures for ex-
periment and simulation.
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fluid, it grows continuously for τ → ∞ [2]. The results
are shown in Fig. 2, where we choose τ = 3000 s and
the corresponding number of simulation steps to indicate
the long-time behaviour. For the simulation, γL stays
constant above Γsimm = 69.25 (the solid-hexatic melt-
ing temperature) and increases rapidly afterwards. For
the experiment, the increase is not that sharp as for the
simulation. However it can be conducted that γL stays
constant until Γexpm ∼ 70.3 and increases afterwards first
weakly and then more rapidly.

ENERGY AND SPECIFIC HEAT

The specific heat at constant volume

CV =

(
∂ 〈E〉
∂T

)
V

(2)

= −kBβ2
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)
V
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2

(
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∂β2

)
V

.

with the mean (internal) energy 〈E〉 = −∂(logZ)/∂β,
the partition function Z and β = 1/kBT , can be given in
terms of the energy fluctuations (see e.g. [3]),
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leading to

CV =

〈
E2
〉
− 〈E〉2

kBT 2
. (4)

Since we have a purely repulsive system (with a single
control parameter Γ) in which pressure and volume can
not be changed independently, we subscript the specific
heat per particle as

cN =

〈
E2
〉
− 〈E〉2

NkBT 2
. (5)

For the usual approach (Eq. 2), we calculated the nu-
merical derivative of the reduced energy Ẽ = 〈E〉 /NkBT
in respect to Γ. With ∂T = −(T/Γ)∂Γ it holds

cN =
1

N

∂ 〈E〉
∂T

=
1

N

∂(ẼNkBT )

∂T
(6)

= ... = −kBΓ2 ∂(Ẽ/Γ)

∂Γ
= −Γ2

N

∂(〈E〉 /TΓ)

∂Γ
.

To demonstrate the equivalent energy scale in experi-
ment and simulation, we show the average potential en-
ergy per particle and thermal energy

〈E〉 /NkBT (7)
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FIG. 3. Mean energy 〈E〉 /NkBT (per particle and thermal
energy) for the experiment (filled symbols) and the simula-
tion (open symbols). The inset shows a magnification for the
simulation in the region of interest.

as a function of inverse temperature in Fig. 3. The dif-
ference between simulation and experiment is about 5%
which we attribute to a demagnetization of particles in
experiment due to the dipolar field of the neighboring
particles which effectively reduces the outer field.

To be comparable, the cutoff value for the lattice sum-
mation is set to 9a0 for both experiment and simulation
where a0 is the average particle distance. The inset shows
that there is only a single change of slope at Γ = 68 to
Γ = 68.5 which leads to a single peak in the specific heat
via the derivative approach (Fig. 4). The derivative of
the internal energy (blue straight line in Fig. 4) exactly
reproduces the peak in specific heat calculated from en-
ergy fluctuations for the simulations (blue dotted line in
Fig. 4). In the experiment, however, the data scatters
more compared to simulations. This experimental noise
is attributed e.g. to fluctuations since the number of par-
ticles is not conserved exactly in the field of view and tiny
density fluctuations snap through. Taking the derivative
to calculate the specific heat per particle, any peak due
to the phase transition(s) is beyond experimental resolu-
tion (Fig. 4 filled squares). Here, we would just like to
show that the ’baseline’ of the noise in cN from experi-
ment is comparable to the simulation data and agrees in
the crystal side with the Dulong-Petit value.

PEAK AND BASELINE LEVEL IN THE
EXPERIMENT

In a system where a melting occurs due to an attractive
interaction potential, energy fluctuations become large
around the transition since both phases have typically a
significant difference in density. For our two-dimensional
system with a repulsive interaction potential, there is no
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FIG. 4. Specific heat from energy fluctuations (dashed line,
simulation) and derivative of internal energy (solid lines, sim-
ulation and experiment). For the experiments, the calculation
from the derivative of the energy is too noisy and a reliable
value can be obtained only from the energy fluctuations (see
Fig.2b in the main manuscript).

change in density at all between the fluid and the solid
phase when particle number is conserved. Just the mean
particle distance is larger in the solid due to ordering
which minimizes the potential energy. Thus, the peak in
the specific heat is not caused by density fluctuations but
by fluctuations in local order and structural rearrange-
ments. In the given soft matter system, any fluctuations
due to room temperature or mechanical vibrations lead
directly to density fluctuations entering the internal en-
ergy beyond kBT . Such perturbations increase the scale
of energy fluctuations (right axis of Fig. 2b in the main
manuscript) and unlike in simulations and the derivative
approach, Dulong-Petit law is not recovered in the crys-
tal. Nevertheless the susceptibility to perturbations is
maximized at the phase transition (dislocation unbind-
ing) which affects the peak height in the specific heat
but the peak position at ΓcN = 68.5 is not affected (Fig.
2b of the main manuscript).

CUTOFF DEPENDENCY

The energy per particle is calculated up to a cutoff dis-
tance. In the experiment where we do not have periodic
boundary conditions, this cutoff value reduces the effec-
tive field of view, given that the energy summation can
be taken within the same cutoff value for every particle.
A large cutoff value increases the statistics for every par-
ticle whereas a small cutoff value increases the statistics
of the number of particles. Fig. 5 shows the specific heat
per particle as a function of Γ for different cutoff values
of 5a0, 9a0 (as used in simulation), 15a0, and 20a0. In
Fig.2b of the main manuscript we took a cutoff value of
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FIG. 5. Experimental specific heat from energy fluctua-
tions, with the energy calculated with different cutoffs, as
labeled. Note that the peak decreases with decreasing inter-
action range.

15a0. Note that if the cutoff value is too small, the peak
vanishes.

SPECIFIC HEAT PEAK AND DEFECT CORE
ENERGY

The peak height of the specific heat in Fig. 2a of the
main manuscript is about 20kB . A rough estimate for the
peak height is given by the number of dislocations which
dissociate in a small temperature range times the core
energy of the dislocations. The core energy of isolated
dislocations is approximately 5.5kBT in the hexatic phase
above Tm [4]. We note the change of the overall defect
density ρ. Between Γ = 68.5 to Γ = 68 the change in
defect density is ∆ρ ≈ 0.1 which corresponds to a change
in defect number of ∆Ndef ≈200. We then observe

cN ≈
5.5kBT

2N

∆Ndef
∆T

= −5.5kBΓ

2N

∆Ndef
∆Γ

≈ 30kB

(The factor of 1/2 comes due to the fact that a dislocation
consists of two defects.) This value is already larger than
the measured one which implies that the core energy is
overestimated.

Fig 6 shows a snapshot for the experimental system at
Γ = 68.4 where the specific heat peaks. Particles with six
nearest neighbors are marked with open circles, fivefold
coordinated sites with green and sevenfold coordinated
sites with orange filled circles. Isolated dislocations which
count in the analysis of Fig. 2c,d in the manuscript are
illustrated with smaller black dots (isolated dislocations
might be cut by the field of view). Most of the defects
are arranged in clusters, only 20% appear as isolated dis-
locations. This is beyond KTHNY theory where a dilute
gas of dislocations is assumed for renormalization pro-
cedure. If the defect density increases, the clustering is
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quite natural since the dislocations as well as the discli-
nations have an attractive interaction [4]. This implicitly
means that the fugacity is locally increased in the clus-
ter or equivalently that the core energy is locally reduced
(< 5.5kBT ). This behavior has already been observed for
geometrical defects like interstitials and vacancies where
the fugacity of dislocations is increased locally, too [5].
Note, that all clusters consist of the same number of
five- and seven-folded particles and may be interpreted
as dislocation clusters. Isolated disclinations or clusters
of disclinations (with unequal number of five- and seven-
folded particles) are not found in the hexatic phase but
only in the isotropic phase with the isolated disclinations
being less than 5h (Fig 2b of the main manuscript).

Since we know implicitly that the core energy of clus-
tered defects is overestimated we restrict to isolated dis-
locations in the assessment of the specific heat due to
defects. In Fig. 2c and Fig. 2d, a hyperbolic tangent
functional form is fitted to the defect densities of exper-
iment and simulations to get a smooth derivative. The

FIG. 6. Snapshot of the experimental system at Γ = 68.4
where the specific heat peaks. Particles with six nearest neigh-
bors are marked with open circles, fivefold coordinated sites
with green and sevenfold coordinated sites with orange filled
circles. Isolated dislocations are illustrated with smaller black
dots (isolated dislocations might be cut by the field of view).

peak of the derivative (red curve in Fig 2c,d) gives the
contribution of the two distinct species of isolated de-
fects. The peak positions of isolated dislocations is al-
ready shifted within the hexatic phase, well separated
from the melting temperature Γm. Of course, all defects
contribute to the specific heat: adding clustered dislo-
cations and disclinations shifts the peak to even higher
temperatures (lower Γ) but it can not be attributed to
the onset of disclination unbinding, since the disclina-
tion density times disclination core energy is to small: a
rough estimate of the disclination core energy (≈ 5kBT )
times the number of unbinding disclinations (≈ 1h at
Γ = 58± 1) gives ≈ 1kB .

DETERMINATION OF THE MAGNETIC
PARTICLE SUSCEPTIBILITY

To determine the exact interaction strength, the mag-
netic susceptibility χ has to be measured for every col-
loidal batch. In [6, 7] this was done via a comparison
of the pair correlation function g(r) of the experimental
system and by computer simulations from J. M. Mendez-
Alcaraz in the isotropic fluid phase. With the given χ,
melting was found between 69.5 < Γm < 62.5 [8]. In
[4, 9–11] melting was found at Γm = 60.5 ± 0.5 and the
second transition at Γi = 57 ± 0.5. The susceptibility
was further determined with SQUID measurements be-
ing consistent with the previous values but with large
error bars. In the present manuscript as well as in [14]
the experimental melting transition is found to be at
Γm = 70.2 ± 0.3 if the magnetic susceptibility is again
determined via comparison of pair correlation functions
g(r) with simulations of a) J. M. Mendez-Alcaraz [6],
b) D. Hajnal [12, 13], and c) T. Kruppa [14] and d)
A.M. Puertas independently. However, the transitions
temperatures are just scaled with a constant factor com-
pared to previous ones and the agreement in the present
manuscript with transition temperatures from simulation
is excellent. We attribute the changes to the increased
resolution of CCD-cameras and digital image processing
compared to those a decade ago.
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